The Verge Stated It's Technologically Impressive
charleyespinos 于 6 月之前 修改了此页面


Announced in 2016, Gym is an open-source Python library developed to help with the advancement of support knowing algorithms. It aimed to standardize how environments are specified in AI research study, making published research study more easily reproducible [24] [144] while offering users with a basic user interface for connecting with these environments. In 2022, new developments of Gym have been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research study on computer game [147] using RL algorithms and study generalization. Prior RL research focused mainly on optimizing representatives to solve single jobs. Gym Retro provides the capability to generalize between games with similar ideas however different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack knowledge of how to even stroll, however are given the goals of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing process, the agents find out how to adapt to altering conditions. When an agent is then eliminated from this virtual environment and placed in a new virtual environment with high winds, the representative braces to remain upright, recommending it had found out how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives could create an intelligence "arms race" that might increase an agent's ability to function even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, that learn to play against human players at a high ability level totally through trial-and-error algorithms. Before ending up being a group of 5, the first public demonstration happened at The International 2017, the annual premiere championship competition for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live one-on-one match. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for two weeks of genuine time, and that the learning software application was an action in the instructions of developing software that can handle complex tasks like a cosmetic surgeon. [152] [153] The system uses a kind of reinforcement knowing, as the bots learn in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a full team of 5, and they had the ability to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against expert gamers, however wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, systemcheck-wiki.de the reigning world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot player shows the obstacles of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has demonstrated making use of deep reinforcement knowing (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes machine discovering to train a Shadow Hand, a human-like robotic hand, to manipulate physical things. [167] It finds out entirely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI tackled the things orientation issue by utilizing domain randomization, a simulation technique which exposes the learner to a variety of experiences instead of attempting to fit to reality. The set-up for Dactyl, aside from having motion tracking electronic cameras, also has RGB electronic cameras to enable the robotic to control an arbitrary item by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might fix a Rubik's Cube. The robotic was able to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of creating progressively harder environments. ADR varies from manual domain randomization by not needing a human to specify randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs established by OpenAI" to let designers call on it for "any English language AI task". [170] [171]
Text generation

The business has popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language model was written by Alec Radford and his coworkers, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world understanding and process long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just limited demonstrative versions at first launched to the general public. The full version of GPT-2 was not instantly released due to issue about prospective abuse, including applications for composing fake news. [174] Some professionals revealed uncertainty that GPT-2 postured a substantial hazard.

In response to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to spot "neural fake news". [175] Other scientists, such as Jeremy Howard, alerted of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be difficult to filter". [176] In November 2019, OpenAI released the complete variation of the GPT-2 language model. [177] Several websites host interactive presentations of various instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose students, illustrated by GPT-2 attaining advanced precision and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI specified that the complete version of GPT-3 contained 175 billion criteria, [184] two orders of magnitude larger than the 1.5 billion [185] in the full variation of GPT-2 (although GPT-3 designs with as couple of as 125 million specifications were also trained). [186]
OpenAI specified that GPT-3 prospered at certain "meta-learning" tasks and could generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and German. [184]
GPT-3 considerably improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or coming across the essential ability constraints of predictive language designs. [187] Pre-training GPT-3 needed numerous thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not immediately released to the general public for concerns of possible abuse, although OpenAI planned to allow gain access to through a paid cloud API after a two-month complimentary personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can develop working code in over a lots shows languages, the majority of effectively in Python. [192]
Several issues with glitches, style flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been accused of emitting copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar exam with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also check out, examine or create as much as 25,000 words of text, and write code in all significant programming languages. [200]
Observers reported that the model of ChatGPT utilizing GPT-4 was an improvement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has decreased to expose various technical details and stats about GPT-4, such as the accurate size of the design. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained state-of-the-art results in voice, multilingual, bio.rogstecnologia.com.br and vision criteria, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller sized version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly helpful for enterprises, start-ups and designers looking for to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have been developed to take more time to think about their responses, leading to higher accuracy. These designs are especially reliable in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and disgaeawiki.info Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking design. OpenAI also revealed o3-mini, a lighter and faster version of OpenAI o3. As of December 21, 2024, this design is not available for public usage. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the opportunity to obtain early access to these designs. [214] The model is called o3 rather than o2 to prevent confusion with telecoms services provider O2. [215]
Deep research study

Deep research study is an agent developed by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 design to perform comprehensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools enabled, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic similarity between text and images. It can especially be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather handbag formed like a pentagon" or "an isometric view of a sad capybara") and create corresponding images. It can produce pictures of sensible objects ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an updated variation of the model with more practical outcomes. [219] In December 2022, OpenAI published on GitHub software for Point-E, a new simple system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful model better able to produce images from complex descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was released to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can create videos based on short detailed prompts [223] along with extend existing videos forwards or bio.rogstecnologia.com.br backwards in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of produced videos is unidentified.

Sora's development team named it after the Japanese word for "sky", to symbolize its "endless imaginative potential". [223] Sora's technology is an adjustment of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos licensed for that purpose, but did not reveal the number or the precise sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, systemcheck-wiki.de 2024, stating that it could generate videos as much as one minute long. It likewise shared a technical report highlighting the approaches utilized to train the design, and the model's capabilities. [225] It acknowledged a few of its shortcomings, including battles mimicing complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", but noted that they should have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, noteworthy entertainment-industry figures have actually shown significant interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry expressed his awe at the innovation's ability to create sensible video from text descriptions, mentioning its prospective to revolutionize storytelling and material production. He said that his enjoyment about Sora's possibilities was so strong that he had actually decided to stop briefly plans for expanding his picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a big dataset of diverse audio and is likewise a multi-task design that can perform multilingual speech acknowledgment as well as speech translation and trademarketclassifieds.com language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce songs with 10 instruments in 15 designs. According to The Verge, a song created by MuseNet tends to start fairly however then fall into chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were utilized as early as 2020 for the internet psychological thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs tune samples. OpenAI stated the songs "show regional musical coherence [and] follow traditional chord patterns" but acknowledged that the tunes lack "familiar larger musical structures such as choruses that repeat" which "there is a considerable gap" between Jukebox and human-generated music. The Verge stated "It's technically remarkable, even if the outcomes sound like mushy versions of songs that might feel familiar", while Business Insider specified "surprisingly, some of the resulting songs are catchy and sound legitimate". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI released the Debate Game, which teaches devices to dispute toy problems in front of a human judge. The function is to research whether such a method may help in auditing AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of eight neural network designs which are typically studied in interpretability. [240] Microscope was produced to evaluate the features that form inside these neural networks quickly. The designs included are AlexNet, VGG-19, different variations of Inception, and different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool constructed on top of GPT-3 that provides a conversational user interface that permits users to ask concerns in natural language. The system then responds with a response within seconds.